Estimation of Value-at-Risk with Time Varying skewness and kurtosis

Document Type : Research Paper

Authors

1 Assistant Prof. in Financial Engineering, University of Science and Culture, Tehran, Iran

2 MSc. in Financial Engineering, University of Raja, Qazvin, Iran

Abstract

This paper studies the effect of considering time varying skewness and kurtosis on the estimation of value at risk (VaR) for both long and short positions using the HYAPARCH model and daily data for Tehran Stock Exchange Price Index (TEPIX). Our results show that applying conditional distributions with time varying or constant skewness and degrees of freedom is able to capture the asymmetry appropriately compared to the normal distribution. However, the VaR estimations of these models are conservative, and they are appropriate for risk averse investors.

Keywords


اسلامی بیدگلی غلامرضا و همکاران (1392). محاسبة ارزش در معرض خطر قیمت سبد نفتی اوپک با استفاده از مدل‌های حافظة بلندمدت گارچ، مطالعاتاقتصادانرژی، 39، 1 ـ 19.
کشاورز حداد غلامرضا و صمدی، باقر (1388). برآورد و پیش‌بینی تلاطم بازدهی در بازار سهام تهران و مقایسة دقت روش‌ها در تخمین ارزش در معرض خطر:  کاربردی از مدل‌های خانوادةFIGARCH ، تحقیقاتاقتصادی، 86، 193 ـ 235.
شاخص بازده نقدی و قیمت بورس سهام تهران، http://www.irbourse.com.
Andersen, T. & Bollerslev, T. (1997). Intraday periodicity and volatility persistence in financial markets, Journal of Empirical Finance, 4, 115-158.
Baillie, R. (1996). Long memory processes and fractional integration in economics, Journal of Econometrics, 73, 5-59.
Baillie, R., Bollerslev, T. & Mikkelsen, H. (1996). Fractionally Integrated Generalised Autoregressive Conditional Heteroscedasticity, Journal of Econometrics, 74, 3-30.
Bates, D. (1996). Jumps and Stochastic volatility: exchange rate processes implicit in Deutschemark options, The Review of Financial Studies, 9, 69-107.
Bollerslev, T. (1987). A Conditional Heteroscedastic Time Series Model for Speculative Prices and Rates of Return, The Review of Economics and Statistics, 69, 542-547.
Bond, S. & Patel, K. (2003). The Conditional Distribution of Real Estate Returns: Relating time variation in higher moments to downside risk measurement, Journal of Real Estate Finance and Economics, 26, 319-339.
Christoffersen, P. (1998). Evaluating Interval Forecasts, International Economic Review, 39, 841-862.
Dark, J. (2010). Estimation of Time Varying Skewness and Kurtosis with an Application to Value at Risk, Studies in Nonlinear Dynamics and Econometrics, 14(2).
Davidson, J. (2004). Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model, Journal of Business and Economic Statistics, 22, 16-29.
Ding, Z., Granger, C. & Engle, R. (1993). A Long Memory Property of Stock Market Returns and a New Model, Journal of Empirical Finance, 1, 83-106.
Diongue, A. & Guegan, D. (2007). The Stationary Seasonal Hyperbolic asymmetric power ARCH model, Statistics and Probability Letters, 77, 1158- 1164.
Elder, J. & Jin, H. (2007). Long memory in commodity futures volatility: A wavelet perspective, The Journal of Futures Markets, 27, 411-437.
Engle, R. & Bollerslev, T. (1986). Modelling the Persistence of Conditional Variances, Econometric Reviews, 5, 1-50.
Fang, H. & Lai, T. (1997). Co-kurtosis and capital asset pricing, The Financial Review, 32, 293-307.
Geweke, J. & Porter-Hudak, S. (1983). The estimation and application of long memory time series models, Journal of Time Series Analysis, 4, 221-38.
Guermat, C. & Harris, R. (2002). Forecasting value at risk allowing for time variation in the variance and kurtosis of portfolio returns, International Journal of Forecasting , 18, 409-419.
Hansen, B. (1994). Autoregressive Conditional Density Estimation, International Economic Review, 35, 705-730.
Harvey, C. & Siddique, A. (1999). Autoregressive Conditional Skewness, Journal of Financial and Quantitative Analysis, 34, 465-487.
Harvey, C. & Siddique, A. (2000). Conditional skewness in Asset Pricing Tests, The Journal of Finance, 55, 1263-1295.
Heston, S. & Nandi, S. (2000). A closed-form GARCH option valuation model, The Review of Financial Studies, 13, 585-625.
Jondeau, E. & Rockinger, M. (2003). Conditional Volatility, Skewness, and Kurtosis: Existence, Persistence and Comovements, Journal of Economic Dynamics and Control, 27, 1699-1737.
Kraus, A. & Litzenberger, R. (1976). Skewness Preferences and the Valuation of Risk Assets, Journal of Finance, 31, 1085-1100.
Kupiec, P. (1995). Techniques for verifying the accuracy of risk measurement models, Journal of Derivatives, 3, 73-84.
Lambert, P. & Laurent, S. (2001). Modelling Financial Time Series Using GARCH-Type Models and a Skewed Student Density, Mimeo, Universite de Liege.
Liu, S. & Brorsen, B. (1995). Maximum Likelihood Estimation of a GARCH-STABLE Model, Journal of Applied Econometrics, 2, 273-285.
Lo, A. (1991). Long-term memory in stock market prices,Econometrica, 59, 1279-1313.
Nelson, D. (1991). Conditional heteroscedasticity in asset returns: A new approach, Econometrica, 59, 347-370.
Peters, J. (2001). Estimating and forecasting volatility of stock indices using asymmetric GARCH models and (Skewed) Student-t densities, Mimeo, University of Liege, Belgium.
Premaratne, G. & Bera, A. (2001). Modeling Asymmetry and Excess Kurtosis in Stock Return Data, Mimeo, University of Illinois.
Rockinger, M. & Jondeau, E. (2001). Entropy Densities, with an application to autoregressive conditional skewness and kurtosis, Journal of Econometrics, 106, 119-142.
Smith, D. (2003). Conditional Coskewness and Asset Pricing, Mimeo, Simon Fraser University.
Tse, Y. (1998). The Conditional Heteroscedasticity of the Yen-Dollar Exchange Rate, Journal of Applied Econometrics, 13, 49-55.
Wilhelmsson, A. (2009). Value at Risk with time varying variance, skewness and kurtosis – the NIG-ACD model, The Econometrics Journal, 12, 82-104.