Investigation the Long Run and Short Run Impact of Banking and Economic Factors on Public Bank’s None-Performing Loan

Document Type : Research Paper

Authors

1 Assistant Professor in Economics, Faculty of Economic, University of Mazandaran, Babolsar

2 Assistant Professor in Economics, Faculty of Economic, University of Mazandaran, Babolsar, Iran

Abstract

Banking system has been faced recently by none-performing Loan in Iran and it has many consequences such as lack of liquidity and reduction in the volumes of credit in Iran’s banking system. This study investigates the impact of banking and economic factors affecting on none-performing Loan in seven public banks in the framework of dynamic panel data model with using one-step generalized method of moment(GMM) estimator during the time period of 1380 until 1393 based on the importance role of none-performing Loan in the banking system. The results indicate that economic variables (economic growth, inflation rate, real interest rate and public debts) have a significant role in explaining long run and short run changes in public bank’s None-performing Loan, whereas management and efficiency among bank’s factors have a significant role in explaining changes in public bank’s None-performing Loan. Based on the results, changes in public bank’s None-performing Loan compare with economic and banking factors, are more sensitive to economic condition.
JEL Classification: E5, C23

Keywords


احمدیان، اعظم و داوودی، آزاده (1391).  اثر نظارت بانکی بر کاهش مطالبات معوق. فصلنامه‌ی حسابداری مدیریت، دوره‌ی 5، شماره‌ی 12.
اشرف احمدیان، علی (1391). مدیریت ریسک اعتباری، چالش پیش روی تأمین مالی در سیستم بانکی ایران. سومین کنفرانس بین المللی صنعت احداث.
اکرامی، محمود و رهنما اسکی، آزاده (1388). بررسی عوامل مؤثر در مطالبات سررسید گذشته و معوق بانک. پژوهشنامه‌ی اقتصادی، شماره‌ی 6 ویژه نامه‌ی بانک.
حیدری، هادی، زواریان، زهرا و نوربخش، ایمان (1390). بررسی اثر شاخص‌های کلان اقتصادی بر مطالبات معوق بانک‌ها. پژوهش‌های اقتصادی، دوره‌ی 11، شماره‌ی 1.
دادگر، علی (1385). بررسی علل پیدایش مطالبات معوق در بانک صادرات ایران و اثرات آن بر نقدینگی و درآمد بانک. روزنامه‌ی تجارت با شماره‏های متعدد، از جمله 14. 15.
کردبچه، حمید و پردل نوش‌آبادی، لیلا (1390). تبیین عوامل مؤثر بر مطالبات معوق در صنعت بانکداری ایران. پژوهش‌های اقتصادی ایران، دوره‌ی 16، شماره‌ی  49.
Ando, A., & Modigliani F. (1963). The ‘life-cycle’ hypothesis of saving: aggregate implications and tests. American Economic Review,  53(1), 55-84
Abid, L., Ouertani, M., & Nejib, S. Z. (2014). Macroeconomic and Bank-Specific Determinants of Household’s Non-Performing Loans in Tunisia: A Dynamic Panel Data. Procedia Economics and Finance, 13 , 58 – 68
Ahmad, A.S., Takeda, C., & Thomas S. (2009) Bank loan loss provisions: A reexamination of capital management, earnings management and signaling effect’. Journal of Accounting and Economics, 28(1),  1-25.
Arellano, M., & Bond, S. ( 1991). Some tests of specification for panel data: Monte Carloevidence and an application to employment equations. Review of EconomicStudies, 58, 277–297.
Arellano, M., & Bover, O. (1995). Another look at the instrumental variable estimationof error-component models. Journal of Econometrics, 68, 29–51.
Babihuga, R. (2007). Macroeconomic and nancial soundness indicators: An empirical investigation. IMF working paper, no.115, 2007.
Barth, J.R.,  Caprio, JR.G., & Levine, R. (2012). Bank Regulation and Supervision: WhatWorks Best?. Journal of Financial Intermediation, 13, 205-248.
Barth, J.R.,  Dopico, L.G., Nolle, D.E. & Wilcox, J.A. (2012). Bank safety and soundness and the structure of bank supervision: A crosscountry analysis. International Review of Finance, 3(3-4),163-188.
Berger, A., & DeYoung, R.)1997(. Problem loans and cost efficiency in commercialbanks. Journal of Banking and Finance, 21, 849–870.
Blundell, R., & Bond, S. )1998(. Initial conditions and moment conditions in dynamic panel data models. Journal of Econometrics, 87, 115–143.
Blundell, R., Bond, S., & Windmeijer, F. )2000(. Estimation in Dynamic Panel Data Models: Improving on the Performance of the Standard GMM Estimator. In: Nonstationary Panels, Panel Cointegration and Dynamic Panels. In: Baltagi, B. (Ed.), Advances in Econometrics, 15. JAI Press, Elsevier Science, Amsterdam
Boudriga, A., Boulila, N., &Jellouli, S. (2009). Does bank supervision impact nonperforming loans: cross-country determinants using aggregate data?. MPRA Paper No.18068, Octobr 2009.
Bond, S. (2002). Dynamic panel data models: a guide to micro data methods and practice. Portuguese Economic Review, 1, 141–162.
Bond, S., & Windmeijer, F. (2002). Finite Sample Inference for GMM Estimators in Linear Panel Data Models: A Comparison of Alternative Tests. Mimeo, Institute for fiscal studies, London.
Boubakri, N.,  Cosset, J.C., & Guedhami, O.(2008). Postprivatization corporate governance: The role of ownership structure and investor protection. Journal of Financial Economics, 76( 2), 369-399.
Breuer, J.B. (2009). Problem bank loans, con_icts of interest, and institutions. Journal of nancial stability, 2, 266- 285.
Castro, Vítor (2013) . Macroeconomic determinants of the credit risk in the banking system: The case of the GIPSI. Economic Modeling, 31, 672-683.
Carey, M. (1998). Credit risk in private debt portfolios. Journal of Finance, 53, 1363– 1387.
Carey, M. (2002). A guide to choosing absolute bank capital requirements. Journal of Banking and Finance, 26, 929–951.
Da Silva, M.S., & Divino, J.A. (2013). The role of banking regulation in an economy under credit risk and liquidity shock. North American Journal of Economics and Finance, available at SciVerse ScienceDirect
Demirguc-Kunt, A., Detragiache, E., & Tressel, T. (2008). Banking on the Principles: Compliance with Basel Core Principles and Bank Soundness. Journal of Financial Intermediation, 17(4), 511-542.
Fransiscus. (2012). Assessing Credit Risk: An Application of Data Mining in a Rural Bank. Procedia Economics and Finance, 4, 406–412
Fofack, H. (2005). Nonperforming Loan in Sub-Saharan Africa, Causal Analysis and Macroeconomic Implications. World Bank Policy Research, Working Paper N 3769
Geanakoplos, J. (2009). The Leverage Cycle. Cowles Foundation Discussion Paper No. 1715.
Louzis, Dimitrios P., Vouldis, Angelos, T., & Metaxas, Vasilios L. (2012). Macroeconomic and bank-specific determinants of non-performing loans in Greece: A comparative study of mortgage, business and consumer loan portfolios. Journal of Banking & Finance, 36 ,10-27
Pasiouras, F. (2008). International evidence on the impact of regulations and supervision on banks’ technical ef_ciency: An application of two-stage data envelopment analysis. Review of Quantitative Finance and Accounting, 30, 187-223.
Podpiera, J., & Weill, L. (2008). Bad luck or bad management? Emerging banking market experience. Journal of Financial Stability, 4, 135–148.
Quagliarello, M. (2007). Banks’ Riskiness Over the Business Cycle: A Panel Analysis on Italian Intermediaries. Applied Financial Economics, 17,119–138.
Rinaldi, L., & Sanchis-Arellano, A. (2006). Household Debt Sustainability: What Explains Household Non-Performing Loans? An Empirical Analysis. ECB Working Paper.
Roberto B., & Ricardo G. (2012). Determinants of Default Ratios in the Segment of Loans to Households in Spain. Banco De EPANA, 2012.
Sabbah, G. (2013). Fluctuations Economiques et Dynamique de la Constitution de Provisions pour Créances Douteuses des Banques Luxembourgeoises. Banque Centrale de Luxembourg; Cahier d’Etudes N, 81.
Salas, V., & Saurina, J. ( 2002). Credit risk in two institutional regimes: Spanish commercial and savings banks. Journal of Financial Services Research , 22, 203–224.
Stiroh, K. (2004a). Diversification in banking: is noninterest income the answer? . Journal of Money, Credit and Banking, 36, 853–882.
Stiroh, K. (2004b). Do community banks benefit from diversification?. Journal of Financial Services Research, 25, 135–160.
Stern, G., & Feldman, R. (2004). Too Big to Fail: The Hazards of Bank Bailouts. The Brookings Institution, Washington, DC.