Urban Electricity Energy Planning by using Stochastic Programming Approach (Case Study Metropolitan Cities Tehran and Isfahan)

Document Type : Research Paper

Authors

1 Department of Economics, Faculty of Administrative Sciences and Economics, University of Isfahan, Isfahan, Iran

2 Master, Department of Urban Economics, Isfahan University of Arts

3 Professor, Department of Economics, Faculty of Administrative Sciences and Economics, University of Isfahan, Isfahan, Iran

4 Department of Economics and Entrepreneurship, Art Universiy of Isfahan, Esfahan, Iran

Abstract

This research provides a copula-based stochastic programming that is able to determine the optimal amounts of primary energy resources and different technologies to supply the required electrical energy. In this model, the uncertainty caused by random variables is presented in different scenarios, and uncertain interactions between random variables are shown using the copula functions with the different probability distributions and previously unknown correlations. Then, based on the developed approach of Copula-based stochastic programming, urban energy system planning for Tehran and Isfahan is formulated. The results obtained from the solution of the model indicate that the current trend is not consistent with the use of technologies with the optimization results, and it shows that in each case, solar technology compared with combined cycle technology, gas Turbine and steam in providing a part of the demand for electricity in terms of Economic and environmental benefits, and should be prioritized in investment policies. In order to compensate for the supply shortage, the remaining electrical energy should also be supplied by the grid, which will reduce the amount of pollution, compared with the situation at the same cost. In addition, the results show that the uncertainty in the components of the system has significant effects on the output of decision variables and system cost.
JEL Classification: C02, L11, Q40, R00

Keywords


بخرد، مرتضی (1390). بهینه‌سازی عرضه انرژی در ایران: مطالعه موردی عرضه الکتریسیته (با تأکید بر انتخاب فناوری تولید). پایان‌نامه کارشناسی ارشد. دانشگاه شهید باهنر کرمان، دانشکده مدیریت و اقتصاد.
ترازنامه انرژی سال 1394. (1395). معاونت امور برق و انرژی، دفتر برنامه‌ریزی کلان برق و انرژی.
سالنامه آماری استان اصفهان 1395 (1396). سازمان مدیریت و برنامه‌ریزی استان اصفهان، معاونت آمار و اطلاعات.
سالنامه آماری استان تهران 1395 (1396). سازمان مدیریت و برنامه‌ریزی استان اصفهان، معاونت آمار و اطلاعات.
صفاری، بابک، منصوری، نسیم و نصراصفهانی، رضا (1395). برنامه‌ریزی عرضه بهینه انرژی پایدار با استفاده از مدل برنامه‌ریزی آرمانی: مطالعه موردی شهرستان اصفهان. تحقیقات اقتصادی، دوره 51، شماره 2، صفحه 435-413.
صفاری، بابک (1391). ارائه مدل عرضه بهینه انرژی الکتریکی با استفاده از برنامه‌ریزی تصادفی بازه­ای چندمرحله­ای (ایران). پایان­ نامه دکتری، دانشگاه اصفهان، دانشکده علوم اداری و اقتصاد.
گزارش وضعیت محیط‌ زیست ایران 1392-1383 (1394). سازمان حفاظت محیط‌زیست. صفحه 24-19.
Akbari, T., Rahimian, A., & Kazemi, A. (2011). A multi-stage stochastic transmission expansion planning method. Energy Conversion Management, PP. 53-2844.
Bp energy Outlook (2017). The role Africa will play in driving global energy demand. Beyond 2035: Africa.
Bruckner, Th., Groscurth, H. -M., & Kummel, R. (1997). Competition and Synergy between Energy Technologies in Municipal Energy Systems. Energy 22, no. Vol. 10, PP.1005-1014.
Charnes, A., & Cooper, W.W. (1989). Chance constrained programming. Management science, Vol. 6, PP.  73-79.
Chen, F., Huang, GH., Fan, YR., & Chen, JP (2017). A copula-based fuzzy chance-constrained programming model and its application to electric power generation systems planning. Apply Energy, PP.  291-309.
Health Organization (2016). Ambient air pollution: A global assessment of exposure and burden of disease: World (WHO/FWC/EPE/17.1). Licence: CC BY-NC-SA 3.0 IGO.
Infanger, G., & Morton, DP (1996). Cut sharing for multistage stochastic linear programs with interstage dependency. Math Program, Vol. 75, PP. 241–56.
International energy Agency (IEA). World Energy Outlook Special Report 2016: Energy and Air Pollution; 2016. Available at: <https://www.iea.org/publications/freepublication/publication/weo-2016-special-ewport-energy-and-air-pollution.html >.
Nelsen, RB (2006). An introduction to copulas. 2nd ed New York: Springer.
Odetayo, B., MacCormack, J., Rosehart, WD., & Zareipour, H. (2017). A chance constrained programming approach to integrated planning of distributed power generation and natural gas network. Electr Power Syst Res, pp. 197–207.
Yu, L., Li, Y.P., Huang, G.H., & Shan, B.G. (2017). An interval-possibilistic basic flexible programming method for air quality management of municipal energy system through introducing electric vehicles. Sci Total Environ, P.P. 593-594:29-418.
Yu, L., Li, Y.P., Huang, G.H., Fan, Y.R., & Nie, S. (2018). A copula-based flexible-stochastic programming method for planning regional energy under multiple uncertainties: A case study of the urban agglomeration of Beijing and Tianjin. Applied Energy, PP. 60-74.