Determining the Optimal Combination of Urban Transportation Modes

Document Type : Research Paper


1 Master of Management, Faculty of Administrative Sciences and Economics, University of Isfahan,, Iran

2 Assistant Professor, Department of Economics, Faculty of Administrative Sciences and Economics, University of Isfahan,, Iran

3 Assistant Professor, Faculty of Engineering, University of Isfahan, Iran


The performance of urban transportation modes is a critical issue for people's mobility. This research analyses various transportation modes in Isfahan city, focusing on social cost minimization and comfort maximization. This study aims to determine the optimal combination of urban transportation modes by considering the appropriate comfort level in Isfahan. The study's results indicate that different allocation models are suitable for different cost-comfort combinations cases. All of these combinations, called Pareto points, are optimal and one of these points can be selected according to the policy-maker opinion. The input data are based on data of origin-destination obtained from the Deputy of Transportation and Traffic of Isfahan Municipality between 189 traffic areas. This data is reduced to 44 integrated areas for the sake of simplicity. The model used in this research is a bi-objective linear programming model. In this research, GAMS software is used for modeling, ArcGIS software is used for data mining, and finally, Excel and SPSS have been applied to analyze the results.
JEL Classification: C61, P25, R42


  1. احمدوند، علی محمد، محمدیانی،زینب و خدادادی ابیازنی، حدیثه (1394). مدل‌سازی پویای دستگاه حمل ونقل شهری پایدار به‌منظور اصلاح و بهبود ترافیک.  مدرس علوم انسانی، پژوهش‌های مدیریت در ایران (2) ۳۱-2.
  2. برادران، وحید و آذری‌خواه، ارمغان (1399). ارائه مدل چندهدفه مسیریابی در شبکه سیستم‌های حمل و نقل عمومی چندوجهی درون شهری. مطالعات مدیریت صنعتی، 18(57): 375-345.
  3. حقانی میلاد و شاه­حسینی، زهرا (1391). کتاب برنامه­ریزی حمل­ونقل و مهندسی ترافیک، تهران: نشر کتاب آوا.
  4. محمدی ده چشمه، پژمان و مهدوی، داود (1398). برنامه‌ریزی استراتژیک بهبود جایگاه سیستم حمل و نقل شهری در شهرکرد با استفاده از تلفیق رویکردهای SWOT و QSP. جغرافیا و برنامه‌ریزی، 23(68): 264-245.
  5. شیرزادی بابکان، علی و طالعی، محمد و علیمحمدی عباس (1392). انتخاب وسیله حمل و نقل عمومی مناسب در یک کریدور شهری: کاربرد روش­های تصمیم‌گیری چند معیاره، مطالعات و پژوهش‌های شهری و منطقه‌ای) 18(24-1.
  6. صلواتی، علیرضا و حق‌شناس، حسین (1387). یکپارچه‌سازی سیستم حمل و نقل عمومی به روش AHP مطالعه موردی: شهر اصفهان هشتمین کنفرانس مهندسی حمل و نقل و ترافیک ایران.
  7. مطالعات جامع تهران (1392). طرح کاهش میزان آلایندگی هوا و صوت ناشی از ترافیک در شهر تهران، مطالعات مقدماتی، کارفرما: سازمان حمل­ونقل و ترافیک تهران
  8. مطالعات جامع مشهد (1389). معاونت حمل­ونقل و ترافیک، سازمان حمل­ونقل و ترافیک، ساخت، پرداخت مدل­های تابع زمان سفر- حجم برای معابر اصلی، مهندسین مشاور طرح هفتم.
  9. Abu-Allaban, M., & Abu-Qudais, H. (2011). Impact assessment of ambient air quality by cement industry: A case study in Jordan. Aerosol and Air Quality Resarch, 11(7), 802-810.
  10. Awasthi, A. Chauhan, S. S., Omrani, H., & Panahi, A. (2011). A hybrid approach based on SERVQUAL and fuzzy TOPSIS for evaluating transportation service quality. Computers & Industrial Engineering, 61(3), 637-646.
  11. Bahmankhah, B., & Coelho, M. C. (2017). Multi-objective optimization for short distance trips in an urban area: choosing between motor vehicle or cycling mobility for a safe, smooth and less polluted route. Transportation Research Procedia, 27, 428-435.
  12. Elbert, R., Müller, J. P., & Rentschler, J. (2020). Tactical network planning and design in multimodal transportation–A systematic literature review. Research in Transportation Business & Management, 35, 100462.
  13. El-Diraby, T., Abdulhai, B., & Pramod, K. (2005). The application of knowledge management to support the sustainable analysis of urban transportation infrastructure. Canadian Journal of Civil Engineering, 32(1), 58-71.
  14. Fellesson, M., & Friman, M. (2012). Perceived satisfaction with public transport service in nine European cities. Paper presented at the Journal of the Transportation Research Forum.
  15. Gupta, P., Mehlawat, M. K., Aggarwal, U., & Charles, V. (2018). An integrated AHP-DEA multi-objective optimization model for sustainable transportation in mining industry. Resources Policy.
  16. Hao, C., & Yue, Y. (2016). Optimization on combination of transport routes and modes on dynamic programming for a container multimodal transport system. Procedia engineering, 137, 382-390.
  17. Henry, L., & Litman, T. A. (2011). Evaluating New Start Transit Program Performance.
  18. Jeon, C. M., Amekudzi, A. A., & Guensler, R. L. (2013). Sustainability assessment at the transportation planning level: Performance measures and indexes. Transport Policy, 25, 10-21.
  19. Jonsson, R. D. (2008). Analysing sustainability in a land-use and transport system. Journal of Transport Geography, 16(1), 28-41.
  20. Lai, W.T., & Chen, C.F. (2011). Behavioral intentions of public transit passengers—The roles of service quality, perceived value, satisfaction and involvement. Transport Policy, 18(2), 318-325.
  21. Nassereddine, M., & Eskandari, H. (2017). An integrated MCDM approach to evaluate public transportation systems in Tehran. Transportation Research Part A: Policy and Practice, 106, 427-439.
  22. Otto, S. (2010). The psychology of transport choice. Institute for Ecological Economic Research (IÖW), Corpus-The SCP Knowledge Hub.
  23. Ülengin, F., Kabak, Ö., Önsel, Ş., Ülengin, B., & Aktaş, E. (2010). A problem-structuring model for analyzing transportation–environment relationships. European Journal of Operational Research, 200(3), 844-859.
  24. Verma, A., & Ramanayya, T. (2014). Public transport planning and management in developing countries: CRC Press.
  25. Yu, X., Miao, H., Bayram, A. Yu, M. & Chen, X. (2021). Optimal routing of multimodal mobility systems with ride‐sharing. International Transactions in Operational Research, 28(3), 1164-1189.