Analysis of the Behavioral Pattern of Groundwater Consumers in the Agricultural Sector: A Case Study of Varamin Plain Basin

Document Type : Research Paper

Authors

1 Department of Economics, Faculty of Administrative Sciences and Economics, University of Isfahan, Isfahan, Iran

2 Department of Physical Geography, Faculty of Geographical Sciences And Planing, University of Isfahan, Isfahan, Iran

Abstract

In a situation where water supply constraints have increased due to population growth and economic development, as well as a lack of a suitable consumption pattern, ecological concerns in the socio-economic environment regarding the optimal allocation of water among consumers have become an important issue. Varamin plain basin is located in the southeast of Tehran and produced the majority of agricultural production in this area. Since, the agriculture is the main and the largest consumer of groundwater in this region, so the water crisis has been affected by the pattern of groundwater exploitation. In this paper, agricultural behavior of water consumption was analyzed in the framework of three perspectives: a competitive, a constancy of time preferences and a time inconsistency of preferences during the thirty-year period from the 1368-69 to 1397-98. In order to assess this hypothesis, the current state of groundwater consumption was compared to one of three scenarios presented. In the competitive approach of water consumption, neoclassical equilibrium condition of efficient market was employed. However, in the other two scenarios, the discrete dynamic optimization technique was used to extract the behavioral pattern of water consumption. The conclusion indicated that farmers dealing with groundwater as the main source of agricultural water supply had a non-optimal pattern of time inconsistency in their consumption from a psychological point of view. Therefore, changing the status quo and ensuring the effectiveness of the water policy require the modification of the behavioral pattern of water consumption in farming.
JEL Classification: D91, Q50, Q01

Keywords

Main Subjects


  1. اطلس فرونشست و نرخ آن در سطح کشور (1397). سازمان نقشه برداری کشور.
  2. سالنامه آماری استان تهران (1396). مرکز آمار ایران.
  3. عرب، محمد، فتاحی اردکانی، احمد و فهرستی ثانی، مسعود (1397). بررسی و تحلیل اثرات اقتصادی-اجتماعی و زیست‏محیطی عدم عرضه کافی آب سطحی از دید کشاورزان، مطالعه موردی: دشت ورامین - سد ماملو. آب و توسعه پایدار، 5(1)، 1-6.
  4. گزارش چاه‌های بهره‌برداری محدوده مطالعاتی ورامین، اداره آب منطقه‌ای (1397). دفتر مطالعات پایه، شرکت سهامی آب منطقه‌ای تهران.
  5. نجفی علمدارلو، حامد، احمدیان، مجید و خلیلیان، صادق (1393). ارزیابی اقتصادی تخصیص بهینه آب کشاورزی در دشت ورامین؛ مطالعه موردی سد لتیان. فصلنامه مطالعات اقتصادی کاربردی ایران، 3(9)، 151-167.‎
  6. نور، حمزه (1395). ارزیابی روند مصرف منابع آب زیرزمینی و وضعیت کنونی آن در ایران، سامانه‌های سطوح آبگیر باران، 15(5)، 38-29.
  7. نیازی شهرکی، صفدر (1394). بررسی وضعیت منابع آبی جمهوری اسلامی ایران در 5 سال آینده، ماهنامه نامه آینده پژوهی، 36، 7-2.
  8. Altman, M. (2012). Behavioral economics for dummies. John Wiley & Sons.
  9. Arab, M., Fatahi Ardakani, A., & Fehresti Sani, M. (2018). Analysis of Socio-Economic and Environmental Effects of Insufficient Supply of Surface Water from Farmers' Perspective, Case Study: Varamin Plain- Mamlou Dam. Journal of Water and Sustainable Development, 5(1), 1-6. (in persian)
  10. Ashwell, N. E. Q., Peterson, J. M., & Hendricks, N. P. (2018). Optimal groundwater management under climate change and technical progress. Resource and Energy Economics, 51, 67-83.
  11. Atlas of land subsidence and its rate in Iran (2018). Iran National Cartographic Center. (in persian)
  12. Bouwer, H., & Bouwer, H. (1978). Groundwater hydrology (Vol. 480). McGraw-Hill New York.
  13. Chari, V. V., & Kehoe, P. J. (2013). Bailouts, time inconsistency, and optimal regulation (No. w19192). National Bureau of Economic Research.
  14. Chen, J., Wang, Q., & Li, Q. (2022). A Quantitative Assessment on Ecological Compensation Based on Water Resources Value Accounting: A Case Study of Water Source Area of the Middle Route of South-To-North Water Transfer Project in China. Frontiers in Environmental Science, 10, 854150.
  15. Duncan, S., Hepburn, C., & Papachristodoulou, A. (2011). Optimal harvesting of fish stocks under a time-varying discount rate. Journal of theoretical biology, 269(1), 166-173.
  16. Exploration wells reports, Case Study: Varamin Plain (2018). Reginal water company of Tehran. (in persian)
  17. Forst, W., & Hoffmann, D. (2010). Optimization-theory and practice. Springer Science & Business Media.
  18. Gisser, M., & Sanchez, D. A. (1980). Competition versus optimal control in groundwater pumping. Water resources research, 16(4), 638-642.
  19. Grafton, Q., Adamowicz, W., Dupont, D., Nelson, H., Hill, R. J., & Renzetti, S. (2008). The economics of the environment and natural resources. John Wiley & Sons.
  20. Hepburn, C., Duncan, S., & Papachristodoulou, A. (2010). Behavioural economics, hyperbolic discounting and environmental policy. Environmental and Resource Economics, 46(2), 189-206.
  21. Just, D. R., & Payne, C. R. (2009). Obesity: can behavioral economics help? Annals of Behavioral Medicine, 38(suppl_1), s47-s55.
  22. Katic, P. G., & Grafton, R. Q. (2012). Economic and spatial modelling of groundwater extraction. Hydrogeology Journal, 20(5), 831-834.
  23. Kleinberg, J., & Oren, S. (2014). Time-inconsistent planning: a computational problem in behavioral economics. In Proceedings of the fifteenth ACM conference on Economics and computation, 547-564.
  24. Koundouri, P. (2004). Potential for groundwater management: Gisser‐Sanchez effect reconsidered. Water resources research, 40(6).
  25. Loewenstein, G., & Prelec, D. (1992). Anomalies in intertemporal choice: Evidence and an interpretation. The Quarterly Journal of Economics, 107(2), 573-597.
  26. Najafi, A. H., Ahmadian, M., & Khalilian, S. (2014). Economic evaluation of agricultural water allocation in Varamin Plain, Case study: Latian dam. Quarterly Journal of Applied Economics Studiesin Iran, 3(9), 151-167. (in persian)
  27. Niazi Shahraki, S. (2015). The status of Iran’s water resource in 5 years to come. Future Study Letter Monthly, 36, 2-7. (in persian)
  28. Noor, H. (2017). Analysis of groundwater resources utilization and their current condition in Iran. Iranian Journal of Rainwater Catchment Systems, 5(2), 29-38. (in persian)
  29. Provencher, B., & Burt, O. (1994). A private property rights regime for the commons: The case for groundwater. American Journal of Agricultural Economics, 76(4), 875-888.
  30. Settle, C., & Shogren, J. F. (2004). Hyperbolic discounting and time inconsistency in a native–exotic species conflict. Resource and Energy Economics, 26(2), 255-274.
  31. Shui, H., & Ausubel, L. M. (2004). Time inconsistency in the credit card market. Available at SSRN 586622.
  32. Statistical Yearbook of  Tehran provinence (2017). Statistical center of Iran. (in persian)
  33. Strulik, H. (2021). Hyperbolic discounting and the time‐consistent solution of three canonical environmental problems. Journal of Public Economic Theory, 23(3), 462-486.
  34. Suter, J. F., Collie, S., Messer, K. D., Duke, J. M., & Michael, H. A. (2019). Common pool resource  management at the extensive and intensive margins: experimental evidence. Environmental and Resource Economics, 73(4), 973-993.
  35. Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., & Liermann, C. R. (2010). Global threats to human water security and river biodiversity. nature, 467(7315), 555-561.