اثر رژیم‌محور نرخ ارز بر تورم در ایران: رویکرد بیزی با استفاده از مدل ترکیبی رگرسیون مبتنی بر فرآیند دریکله

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه اقتصاد، دانشکده علوم انسانی، دانشگاه زنجان، زنجان، ایران.

2 گروه اقتصاد، دانشگاه پورتلند، پورتلند، آمریکا.

10.22059/jte.2026.398371.1009017

چکیده

هدف اصلی این پژوهش، بررسی تأثیر رژیم‌محور نرخ ارز بر تورم با تمرکز بر نقش رشد نقدینگی، نوسانات قیمت جهانی نفت برنت و مخارج دولت است. در این راستا، از رویکرد ترکیبی بیزی مبتنی بر فرآیند دریکله (DPMR) بر داده‌های ۱۳۸۳Q۱ تا ۱۴۰۲Q۴ استفاده شد. مدل ، پنج خوشه ساختاریافته شناسایی کرد که در هر یک، شدت و جهت تأثیر متغیرها بر تورم متفاوت است. واریانس درون‌رژیمی از بسیار پایین (رژیم باثبات) تا بسیار بالا (رژیم ناپایدار) متغیر است. رژیم‌ها عبارتند از: نفت‌محور با تورم بالا (شوک‌های نفتی محرک اصلی، سیاست داخلی خنثی)؛ پایدار با اثر نفت کنترل‌شده (انضباط مالی و تثبیت ارزی مؤثر)؛ ناپایدار با اثر همزمان نفت و دولت (بحران ساختاری، تورم فزاینده)؛ تورم ناشی از تقاضای داخلی (فشار هزینه‌های دولت، نفت بی‌اثر)؛ ضدتورمی/رکودی (اثرات معکوس پول و مخارج، رکود تورم‌زدا). همچنین یافته‌ها نشان می‌دهد نوسانات قیمت نفت پایدارترین و قوی‌ترین محرک تورمی است که حتی در رژیم‌های باثبات، اثرات شدید و مثبت دارد. رشد نقدینگی اثر مثبت اما پراکنده دارد؛ میانه منفی و تنوع بین‌خوشه‌ای بالا نشان‌دهنده عدم ثبات رابطه پول–تورم است. در رژیم‌های بحرانی خنثی یا معکوس، در رژیم رکودی تورم‌زدا عمل می‌کند. این ناهمگنی، سیاست پولی زمینه‌محور را الزامی می‌سازد. مخارج دولت عملکرد دوگانه دارد: کنترل تورم در رژیم‌های نفت‌محور و رکودی (۱، ۲ و ۵) از تثبیت قیمت؛ و تحریک تورم در رژیم‌های بحرانی و تقاضایی (۳ و ۴) از طریق فشار بر تقاضای کل. این ناهمگنی ساختاری، روابط علّی ثابت را رد می‌کند و بر  زمینه‌مندی سیاست‌گذاری تأکید دارد.  پیامد سیاستی به‌طور قاطعانه نشان می‌دهد که نسخه واحد برای مهار تورم ناکارآمد است، و سیاست‌گذاران باید رژیم‌محور عمل کنند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Impact of the Exchange Rate Regime on Inflation in Iran: A Bayesian Approach Using a Dirichlet Process Mixture Regression Model

نویسندگان [English]

  • maryam amini 1
  • saman hatamerad 1
  • Bahram Adrangi 2
1 Department of Economics, Faculty of Humanities, University of Zanjan, Zanjan, Iran.
2 Department of Economics, University of Portland, Portland, USA.
چکیده [English]

The main objective of this study is to examine the impact of exchange rate regimes on inflation, focusing on the role of liquidity growth, global Brent oil price fluctuations, and government spending. DPMR used data from 1383Q1 to 1402Q4. The model identified five structured clusters, in each of which the magnitude and direction of the variables' impact on inflation differed. The within-regime variance ranges from very low (stable regime) to very high (unstable regime). The regimes are: oil-driven with high inflation (oil shocks as the main driver, neutral domestic policy); stable with controlled oil effect (fiscal discipline and effective exchange rate stabilization); unstable with simultaneous oil and government effect (structural crisis, rising inflation); domestic demand-driven inflation (government spending pressure, oil ineffective); Deflation/stagflation (reverse effects of money and spending, deflationary stagnation). The findings also show that oil price fluctuations are the most stable and powerful inflation driver, with strong and positive effects even in stable regimes. Liquidity growth has a positive but scattered effect; the negative median and high inter-cluster variation indicate instability of the money-inflation relationship. In neutral or reverse crisis regimes, it acts as a deflationary in a recessionary regime. This heterogeneity necessitates context-based monetary policy. Government spending has a dual function: controlling inflation in oil-driven and recessionary regimes (1, 2, and 5) through price stabilization; and stimulating inflation in crisis and demand-driven regimes (3, 4) through pressure on aggregate demand. This structural heterogeneity rejects fixed causal relationships and emphasizes the contextuality of policymaking. The policy implication strongly suggests that a single prescription for containing inflation is ineffective, and policymakers should act regime-oriented.

کلیدواژه‌ها [English]

  • Bayesian Model
  • Exchange Rate
  • Inflation
Asgharpour, H., Hatamerad, S., Nobahar, E., Adrangi, B., & Heydari, M. (2023). The role of Exchange Rate in the Effect of Money on Economic Growth and Inflation: TVP-VAR Approach. QJERP, 31(108), 165-200. [in Persian] Retrieved from https://qjerp.ir/article-1-3485-en.html.
Asgharpur, H., Heydari, M., Hatamerad, S., & Adrangi, B. (2023). Investigating the Exchange Rate Pass-Through to the Consumer Price Index in Iran using BAYSIAN approaches. Macroeconomics Research Letter17(36), 39-65. Retrieved from https://jes.journals.umz.ac.ir/article_4568_en.html. [in Persian]
Balounejad Nouri, R., Shahidi, A., & Saadatmehr, M. (2024). Non-linear relationship between exchange rate and inflation rate in Iran: A nonparametric quantile-on-quantile approach. Journal of Econometric Modelling9(1), 83-112. Retrieved from https://jem.semnan.ac.ir/article_8434_en.html. [in Persian]
Tahsili, H. (2022). The impact of exchange rate shock on inflation in Iran's economy: application of the threshold vector autoregression model. Iranian Journal of Economic Research, 27(91), 257-285. Retrieved from https://ijer.atu.ac.ir/article_14064_en.html.
Heydari, M., Hatam Rad, S., Rezaei, S., Nobahar, E., & Asgharpour, H. (2024). Investigating the Impact of Liquidity Components on Inflation in Iran: Averaging and Machine Learning Approaches. Journal of Economics and Modelling, 15(2), 33-65. Retrieved from https://ecoj.sbu.ac.ir/article_105571.html?lang=en. [in Persian]
Atefimanesh, R., Tahami pour, M., Samsami, H., & Taghipour, A. (2024). Comparison of the Effect of External Shocks on Inflation in the Fixed and Managed Floating Exchange Rate Regimes in the Economy of Iran with the Dynamic Stochastic General Equilibrium Approach. Iranian Economic Development Analyses10(1), 107-150. Retrieved from https://ieda.alzahra.ac.ir/article_7783.html. [in Persian]
Antoniak, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. The Annals of Statistics, 2(6), 1152–1174. Retrieved from https://doi.org/10.1214/aos/1176342871.
Burstein, A., & Gopinath, G. (2014). International Prices and Exchange Rates. Handbook of International Economics, 4, 391–451. Retrieved from https://www.sciencedirect.com/science/chapter/handbook/abs/pii/B9780444543141000070.
Caselli, F. G., & Roitman, A. (2019). Nonlinear exchange‐rate pass‐through in emerging markets. International Finance, 22(3), 279-306. Retrieved from https://ideas.repec.org/a/bla/intfin/v22y2019i3p279-306.html.
Catao, L. A. V., & Terrones, M. E. (2005). Fiscal Deficits and Inflation. Journal of Monetary Economics, 52(3), 529–554. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S0304393205000139.
Clark, T. E. (1995). Do producer prices lead consumer prices? Federal Reserve Bank of Kansas City Economic Review, 80(3), 25–39. Retrieved from https://econpapers.repec.org/article/fipfedker/y_3a1995_3ai_3aqiii_3ap_3a25-39_3an_3av.80no.3.htm.
Clark, T. E., Huber, F., Koop, G., & Marcellino, M. (2022). Forecasting US Inflation Using Bayesian Nonparametric Models. Federal Reserve Bank of Cleveland. Retrieved from https://doi.org/10.26509/frbc-wp-202205.
Eichengreen, B. (2008). The real exchange rate and economic growth. Commission on Growth and Development Working Paper, 4.
Escobar, M. D., & West, M. (1995). Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association, 90(430), 577–588. Retrieved from https://doi.org/10.2307/2291069.
Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1(2), 209–230. Retrieved from https://doi.org/10.1214/aos/1176342360.
Friedman, M. (1970). The Counter-Revolution in Monetary Theory. London: Institute of Economic Affairs. Retrieved from https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119205814.app2.
Frühwirth-Schnatter, S., & Pyne, S. (2010). Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions. Biostatistics, 11(2), 317–336. Retrieved from https://academic.oup.com/biostatistics/articleabstract/11/2/317/268224?redirectedFrom=fulltext.
Ghanem, D. (2012). Fixed exchange rate regimes and inflation performance: Evidence from MENA countries. Review of Middle East Economics and Finance, 8(1), 1-30. Retrieved from https://ideas.repec.org/a/bpj/rmeecf/v8y2012i1n2.html.
Ghosal, S., & van der Vaart, A. (2017). Fundamentals of Nonparametric Bayesian Inference. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781139029834.
Goldfajn, I., & Werlang, S. R. C. (2000). The Pass-through from Depreciation to Inflation: A Panel Study. Banco Central do Brasil Working Paper, Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=224277.
Ha, J., Stocker, M. M., & Yilmazkuday, H. (2020). Inflation and exchange rate pass-through. Journal of International Money and Finance, 105, 102187. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S0261560620301431.
Hamilton, J. D. (2003). What is an Oil Shock? Journal of Econometrics, 113(2), 363–398. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S0304407602002075.
Hnatkovska, V., Lahiri, A., & Vegh, C. A. (2016). The exchange rate and the transmission of monetary policy. Journal of Monetary Economics, 85, 1–17. Retrieved from https://www.researchgate.net/publication/299548040_The_Exchange_Rate_Response_to_Monetary_Policy_Innovations.
Huber, F., & Koop, G. (2023). Fast and order-invariant inference in Bayesian VARs with nonparametric shocks. Retrieved from https://arxiv.org/abs/2305.16827.
Kilian, L. (2009). Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market. American Economic Review, 99(3), 1053–1069. Retrieved from https://ideas.repec.org/a/aea/aecrev/v99y2009i3p1053-69.html.
Kilian, L., & Park, C. (2009). The impact of oil price shocks on the U.S. stock market. International Economic Review, 50(4), 1267–1287. Retrieved from https://doi.org/10.1111/j.1468-2354.2009.00568.x.
Kilian, L., & Zhou, X. (2020). Does drawing down the US Strategic Petroleum Reserve help stabilize oil prices? Journal of Applied Econometrics, 35(6), 673-691. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/jae.2798.
Marcellino, M., & Pfarrhofer, M. (2024). Bayesian nonparametric methods for macroeconomic forecasting. Handbook of Research Methods and Applications in Macroeconomic Forecasting, 90-125. Retrieved from https://ideas.repec.org/h/elg/eechap/22222_5.html.
Marodin, F. A., & Portugal, M. S. (2019). Exchange rate pass-through in Brazil: À Markov switching DSGE estimation for the inflation-targeting period. Russian Journal of Money and Finance, 78(1), 36-66. Retrieved from https://ideas.repec.org/a/bkr/journl/v78y2019i1p36-66.html.
Nasir, M. A., Huynh, T. L. D., & Vo, X. V. (2020). Exchange rate pass-through & management of inflation expectations in a small open inflation targeting economy. International Review of Economics & Finance, 69, 178-188.
Norets, A., & Pelenis, J. (2021). Bayesian nonparametric inference for panel data models. Journal of Econometrics, 222(2), 768–786. Retrieved from https://doi.org/10.1016/j.jeconom.2020.08.021.
Parray, W. A., Bhat, J. A., Yasmin, E., & Bhat, S. A. (2023). Exchange rate changes and the J-curve effect: Asymmetric evidence from a panel of five emerging market economies. Foreign Trade Review, 58(4), 524-543.
Calvo, G. A., & Reinhart, C. M. (2002). Fear of floating. The Quarterly Journal of Economics, 117(2), 379–408. Retrieved from https://ideas.repec.org/a/bkr/journl/v78y2019i1p36-66.html.
Sargent, T. J., & Wallace, N. (1981). Some Unpleasant Monetarist Arithmetic. Federal Reserve Bank of Minneapolis Quarterly Review, 5(3), 1–17. Retrieved from https://ideas.repec.org/a/fip/fedmqr/y1981ifallnv.5no.3.html.
Taylor, J. B. (2000). Low Inflation, Pass-through, and the Pricing Power of Firms. European Economic Review, 44(7), 1389–1408. Retrieved from https://www.sciencedirect.com/science/article/pii/S0014292100000374.
Vieira, F. V., & Silva, C. G. D. (2023). Exchange Rate Behavior in the BRICS. Brazilian Journal of Political Economy, 44, 125-144. Retrieved from https://www.scielo.br/j/rep/a/r4pSRKkvXbwFGM8y4kSDjSJ/?format=html&lang=enhttps://doi.org/10.1590/0101-31572024-3451.
Zhang, Z. (2024). Multi-regime foreign exchange rate model: Calibration and pricing. Mathematics and Computers in Simulation, 220, 204-218. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S037847542400017X.