ارزیابی سه بخشی کارایی زیست محیطی صنعت برق ایران: رهیافت تحلیل پوششی داده های شبکه ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشکده اقتصاد، دانشگاه خوارزمی، تهران

2 دانشجوی کارشناسی ارشد، رشته مهندسی سیستم های اقتصادی – اجتماعی، دانشکده اقتصاد دانشگاه خوارزمی، تهران

چکیده

برای توسعه‌ی گسترده صنعت برق در کشور علاوه بر بهبود عملکرد فنی و اقتصادی نیاز به افزایش کارایی زیست محیطی از طریق کاهش انتشار آلاینده­ ها و مقدار تلفات است. بنابراین حضور ستاده­ های نامطلوب در کنار ستاده­های مطلوب نقش تعیین­ کننده­ای در عملکرد صنعت برق خواهد داشت. رهیافت تحلیل پوششی داده­ها (DEA) به طور گسترده در ارزیابی کارایی صنعت برق مورد استفاده قرار می­ گیرد. در مدل­های DEA سنتی، کارایی نسبی واحدهای تصمیم­ گیرنده با استفاده از چند ورودی و خروجی محاسبه می­ شود، اما عیب بزرگ این مدل ­ها نادیده گرفتن ساختار درونی یا پیوندهای میان بخش­ های مختلف یک سازمان یا فرآیند تولیدی است. مدل­ های شبکه ­ای ضمن برطرف کردن این عیب بزرگ، وابستگی بین اجزا را در نظر گرفته و ناکارایی را با دقت بیشتری برآورد می­ کنند. در این تحقیق با استفاده از ترکیب مدل غیرشعاعی SBM و ساختار شبکه سه بخشی به ارزیابی کارایی زیست­ محیطی 15 شرکت برق منطقه ­ای ایران در بازه‌ی زمانی 1393-1389 پرداخته شده است. شبکه برق در کشور از سه بخش تولید، انتقال و توزیع تشکیل شده که با استفاده از دو واسطه برق تولید شده و برق منتقل شده به هم وابسته هستند و کارایی سراسری برق توسط آن­ها تعیین می­شود. نتایج تحقیق نشان می­دهد که بخش تولید بیشتر از دو بخش دیگر بر کارایی کل اثر می­گذارد و نمرات کارایی شرکت‌ها را به میزان قابل توجهی کاهش می ­دهد. شرکت خوزستان بالاترین کارایی و شرکت غرب بدترین عملکرد را در کل شبکه برق داشته ­اند. نتایج حاصل از این تحقیق می­ تواند موجب شناخت درست ­تر موقعیت کلی شرکت‌های برق و سیاست ­گذاری مناسب برای بهبودعملکرد آن­ها را فراهم آورد.
طبقه ­بندی JEL: Q43،Q53،C67،C61، Q57

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Three-Stage Environmental Efficiency Evaluation of Iran’s Power Industry: Network Data Envelopment Analysis Approach

نویسندگان [English]

  • Siab Mamipour 1
  • behnam Najafzadeh 2
1 . Assistant Professor, Faculty of Economics, Kharazmi University, Tehran, Iran
2 kharazmi
چکیده [English]

The power industry of Iran needs to increase environmental efficiency through reducing pollution emissions and losses to achieve sustainable development and improving technical and economic performance. So considering undesirable outputs beside desirable outputs has important role on the power industry performance. Data envelopment analysis (DEA) widely used in evaluating the efficiency of the electricity industry. In traditional DEA relative efficiency of Decision Making Units (DMUs) are calculated with multiple inputs and outputs but ignoring the internal structure or links between organization or manufacturing process divisions is a big problem of traditional models. Network models can deal with this big disadvantage and consider inefficiency more accurately. In this study environmental efficiency of 15 Iranian electric power companies has been evaluated during the period (2010-2014) using non-radial Slack Based Measure (SBM) with three stage network structure. Power grid in the country has been made in three parts namely "production", "transmission" and "distribution". They are dependent to each other by two links namely power generated and power transmitted and overall efficiency of power industry is determined by them. Results of the study indicate that generation division effects on overall efficiency more than two others and reduces companies efficiency significantly. Khuzestan company has the highest efficiency and Gharb company belongs to the worst performance. Results of this study can recognize overall condition of electric power companies and provide policy for improving their performance.
JEL Classification: Q43, Q53, C67, C61, Q57

کلیدواژه‌ها [English]

  • Environmental Efficiency
  • Desirable and Undesirable Outputs
  • Network Data Envelopment Analysis
  • SBM Model
  • Electric Power Companies
  1. آماده، حمید و رضایی، علی (1390). اندازه­گیری کارایی زیست محیطی با استفاده از مدل کارایی سراسری ستاده مطلوب و نامطلوب تفکیک‌ناپذیری سراسری در بخش تولید انرژی الکتریکی شرکت‌های برق منطقه­ای. مطالعات اقتصاد انرژی، شماره‌ی 30، صفحات 154-125.
  2. حیدری، کیومرث (1379). ارزیابی کارایی نیروگاه‌های برق حرارتی با استفاده از تحلیل پوششی داده‌ها، پایان‌نامه کارشناسی ارشد، دانشگاه شهید بهشتی.
  3. رضایی، علی (1392). تحلیل کارایی و بهره­وری شرکت‌های توزیع برق ایران: رویکرد مدل مازاد مبنا(SBM) ، فصلنامه‌ی تحقیقات مدل‌سازی اقتصادی، شماره‌ی 13، صفحات 146-119.
  4. سخنور، محمد، صادقی، حسین، عصاری، عباس، یاوری، کاظم و مهرگان، نادر (1390). استفاده از تحلیل پوششی داده‌های پنجره­ای برای تحلیل ساختار و روند کارایی شرکت‌های توزیع برق ایران، پژوهش‌های رشد و توسعه‌ی اقتصادی، سال اول، شماره‌ی 4، صفحات 182-145.
  5. سلیمی، مهرداد و کرامتی، محمدعلی (1394). ارزیابی و تجزیه کارایی فنی شرکت‌های برق منطقه‌ای ایران با رویکرد سه مرحله‌ای تحلیل پوششی داده‌ها، کیفیت و بهره‌وری صنعت برق ایران، سال چهارم، شماره‌ی 8، صفحات 48-37.
  6. سیفی، احمد و سلیمی‌فر، مصطفی و فنودی، هانیه (1392). اندازه‌گیری کارایی زیست محیطی: بررسی موردی نیروگاه‌های حرارتی تولید برق در استان‌های خراسان جنوبی، رضوی و شمالی، اقتصاد انرژی ایران، سال دوم، شماره‌ی 7، صفحات 41-1.
  7. عمرانی، هاشم و قاری‌زاده بیرق، رامین و سلیمان‌پور، مقصود (1392). طراحی سیستم ارزیابی عملکرد و رتبه‌بندی شرکت‌های برق منطقه­ای ایران با استفاده از روش تحلیل پوششی داده­های شبکه­ای، بیست و هشتمین کنفرانس بین‌المللی برق.
  8. متفکرآزاد، محمدعلی، پورعبادالهان کویچ، محسن، فلاحی، فیروز، رنجپور، رضا و سجودی، سکینه (1393). محاسبه‌ی کارایی فنی نیروگاه‌های حرارتی کشور و بررسی عوامل مؤثر بر آن: کاربرد روش تصادفی ناپارامتریک پوششی داده­ها، فصلنامه‌ی تحقیقات اقتصادی، دوره‌ی چهل و نهم، شماره‌ی 1، صفحات 113-93.
  9. ممی­پور، سیاب و نجف­زاده، بهنام (1395)، ارزیابی کارایی زیست­محیطی شرکت‌های برق منطقه­ای: مقایسه‌ی مدل‌های شعاعی و غیرشعاعی، فصلنامه‌ی نظریه­های کاربردی اقتصاد، سال سوم، شماره‌ی 3، صفحات 178-153.
    1. Amirteimoori, A.R., Shahroodi, K., & Shaker Mahmoodkiani, F. (2015). Network Data Envelopment Analysis: Application to Gas Companies in Iran, International Journal of Applied Operational Research, 5, 1-16.
    2. Avkiran, N.K., & McCrystal, A. (2012).Sensitivity analysis of network DEA: NSBM versus NRAM, Applied Mathematics and Computation, 218, 11226–11239.
    3. Bonnini, s., Corain, L., Marozzi, M., & Salmaso, L. (2014). Nonparametric Hypothesis Testing: Rank and Permutation Methods with Applications in R. Wiley Series in Probability and Statistics.
    4. Charnes, A., Cooper, W.W.) 1962(. Programming with linear fractional functionals. Naval Res Logist Quart, 9(3–4), 181–186.
    5. Charnes, A., Cooper, W.W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2, 429–444.
    6. Chen, P.C., Chang, C.C., Yu, M.M., & Hsu, S.H. (2012). Performance measurement for incineration plants using multi-activity network data envelopment analysis: The case of Taiwan. Journal of Environmental Management, 93, 95–103.
    7. Chen, C., & Yan, H. (2011). Network DEA model for supply chain performance evaluation. European Journal of Operational Research, 213 (1), 147–155.
    8. Cook, W.D., & Seiford, L.M. (2009). Data envelopment analysis (DEA)—thirty years on. European Journal of Operational Research, 192, 1–17.
    9. Cook, W.D., Liang, L., & Zhu, J. (2010). Measuring performance of two-stage network structures by DEA: a review and future perspective. Omega, 38, 423–430.
    10. Cooper, W.W., Seiford, L.M., & Zhu, J. (Eds.) (2004). Handbook on data envelopment analysis (pp. 1–39). Dordrecht: Kluwer Academic Publishers.
    11. Färe, R., Grosskopf, S., Lovell, C.A.K., & Pasurka, C. (1989). Multilateral productivity comparisons when some outputs are undesirable: a nonparametric approach. The Review of Economics and Statistics, 71(1), 90–98.
    12. Färe, R., Grosskopf, S., Lovell, C.A.K.,  & Yaisawarng, S. (1993). Derivation of shadow prices for undesirable outputs: a distance function approach, The Review of Economics and Statistics, 75(2), 374–380.
    13. Fukuyama, H., & Mirdehghan, S.M. (2012). Identifying the efficiency status in network DEA, European Journal of Operational Research, 220, 85–92.
    14. Hua, Z., Bian., Y., & Liang, L. (2007). Eco-efficiency analysis of paper mills along the Huai River. Omega, 35, 578–587.
    15. Huang, J., Chen, J., & Yin, Z. (2014). A Network DEA Model with Super Efficiency and Undesirable Outputs: An Application to Bank Efficiency in China, Mathematical Problems in Engineering, Hindawi Publishing Corporation.
    16. Huang, C.W., Chiu., Y.H., Fang., W.T., & Shen, N. (2014). Assessing the performance of Taiwan’s environmental protection system with a non-radial network DEA approach, Energy Policy, 74, 547–556.
    17. Kao, C. (2014). Network data envelopment analysis: A review. European Journal of Operational Research, 239, 1–16.
    18. Lewis, L., & Sexton, T.R.  (2004). Network DEA: efficiency analysis of organizations with complex internal structure, Computers and Operations Research, 31(9), 1365–1410.
    19. Löhgren, M., & Tambour, M. (1999). Productivity and customer satisfaction in Swedish pharmacies: a DEA network model. European Journal of Operational Research, 115, 449–458.
    20. Nemoto, J., & Goto, M. (2003). Measurement of dynamic efficiency in production: An application of data envelopment analysis to Japanese electric utilities. Journal of Productivity Analysis, 19, 191–210.
    21. Ohsato, S., & Takahashi, M. (2015). Management Efficiency in Japanese Regional Banks: A Network DEA, Procedia, Social and Behavioral Sciences, 172, 511 – 518.
    22. Paradi, J.C.,  Rouatt., S., & Zhu, H. (2011). Two-stage evaluation of bank branch efficiency using data envelopment analysis.Omega, 39, 99–109.
    23. Sexton, T.R., & Lewis, H.F. (2003). Two-stage DEA: an application to major league baseball, Journal of Productivity Analysis, 19(2-3), 227–249.
    24. Song, M., Wang., S.,  & Liu, W. (2014). A two-stage DEA approach for environmental efficiency measurement, Environmental Monitoring Assessment, 186, 5.
    25. Tone, K. (2000). A slack-based measure of efficiency in data envelopment analysis, European Journal of Operational Research, 130, 498-509.
    26. Tone, K.) 2001(. A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operation Research, 130, 498–509.
    27. Tone, K. (2002). A slacks-based measure of super-efficiency in data envelopment analysis. European Journal of Operational Research, 143(1), 32–41.
    28. Tone, K., & Tsutsui, M. (2009). Network DEA: a slacks-based measure approach, European Journal of Operational Research, 197, 243–252.
    29. Tone, K., & Tsutsui, M. (2010). Dynamic DEA: a slacks-based measure approach, Omega, 38 , 145–156.
    30. Tone, K., & Tsutsui, M. (2014). Dynamic DEA with network structure: A slacks-based measure approach, Omega, 42, 124–131.
    31. Tsutsui, M., & Goto, M. (2009). A multi-division efficiency evaluation of U.S. electric power companies using a weighted slacks-based measure. Socio-Economic Planning Sciences, 43(3), 201–208.
    32. Von Geymueller, P. (2009). Static versus dynamic DEA in electricity regulation: The case of US transmission system operators. Central European Journal of Operations Research, 17, 397–413.
    33. Xie, B.C., Fan, Y., & Qu, Q.Q. (2012). Does generation form influence environmental efficiency performance? An analysis of China’s power system. Applied Energy, 96, 261–271.