شبیه‌سازی بازار اجاره مسکن با استفاده از مدل‎سازی عامل‌محور (مطالعه موردی: منطقه شش شهر اصفهان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری علوم اقتصادی، دانشکده علوم اداری و اقتصاد، دانشگاه اصفهان

2 استاد، دانشکده اقتصاد دانشگاه اصفهان

3 دانشیار گروه اقتصاد، دانشکده علوم اداری و اقتصاد، دانشگاه اصفهان

4 دانشیار گروه مدیریت بحران، دانشگاه یورک، تورنتو، کانادا

چکیده

مسئله‌ی دسترسی به مسکن برای خانوارها در دو حوزه‌ی جداگانه‌ی «خرید مسکن» و «اجاره‌ی» آن قابل واکاوی است. در این چارچوب، تقاضا برای مسکن شامل تقاضای خرید و تقاضا برای اجاره می‌باشد. با توجه به این موضوع، دو بازار مجزای خرید-فروش و اجاره‌ای مسکن با ویژگی‎های متفاوت در اقتصاد شکل می‌گیرد. بیشتر پژوهش‏های انجام شده در این زمینه معطوف به بازار خرید و فروش بوده و بازار اجاره تا حد زیادی در تحلیل‌های جاری بازار مسکن مورد بی‌توجهی قرار‌گرفته است. این پژوهش تلاش می‏کند، تا با ارائه یک مدل ترکیبی پویایی‌شناسی سیستمی و عامل‌محور، نرخ اجاره را برای پنج سال آتی در بازار اجاره مسکنِ منطقه‌ی شش شهر اصفهان شبیه‌سازی کند و قیمت اجاره آن را مورد پیش‌بینی قراردهد. براساس این شبیه‌سازی محله‌ی هزارجریب با اختلاف زیادی از محله‌ی همت‌آباد به ترتیب دارای بالاترین و پایین‌ترین نرخ اجاره است. پس از محله هزارجریب به ترتیب محله‌های سعادت‌آباد، آبشار، باغ‌نگار، فیض، مسجدمصلی، کوی‌امام، تخت‌فولاد و شهید‌کشوری قرار می‌گیرد. از دیدگاه تقاضا، بالا‌بودن نرخ اجاره در محله‌ی هزارجریب به‏دلیل سطح بالای شاخص برخورداری آن است. از دیدگاه عرضه نیز بالا‌بودن نرخ اجاره در محله‌ی هزارجریب ناشی از پایین‌بودن عرضه‌ی واحدهای استیجاری است.
طبقه‌بندی JEL: R31،R21، C63، E17

کلیدواژه‌ها


عنوان مقاله [English]

Simulation of the Housing Rental Market Using Agent-Based Modeling Case Study: District 6 of Isfahan City

نویسندگان [English]

  • Iman Keyfarokhi 1
  • Nematollah Akbari 2
  • Shekoofeh Farahmand 3
  • Ali Asgary 4
1 Ph.D. Student, Dept. of Economics, University of Isfahan
2 Professor, Dept. of Economics, University of Isfahan
3 Associate Professor, Dept. of Economics, University of Isfahan,
4 Ali Asgary, Associate Professor of Disaster, York University
چکیده [English]

This study tries to predict the rental rates in district six of Isfahan for five years in the future by using an agent-based model. According to this simulation, district of Hezar Jerib has the highest and Hemat Abad has the lowest rental rate. Districts of Sa'adat Abad, Abshar, Baghnegar, Feiz, Masjed Mosala, Kuye Emam, Takht-e Foulad and Shahid Keshvari are followed by the district of Hezar Jerib. From the demand point of view, the high rental rate in Hezar Jerib district is due to higher comfort index in that region. From the supply point of view, the high rental rate in Hezar Jerib district is due to low supply of residential units.
JEL Classification: R31, R21, C63, E17

کلیدواژه‌ها [English]

  • Housing market
  • Rental rate
  • Simulation
  • agent-based model
  • System dynamics
ایزدخواستی، حجت، عرب‌مازار، عباس و احمدی، خلیل (1398). تحلیل عوامل کلان اقتصادی مؤثر بر شاخص توان‌پذیری مسکن خانوار در مناطق شهری ایران: با تأکید بر نقش دولت. فصلنامه مطالعات اقتصادیِ کاربردی ایران، سال هشتم، 29، 71-41.
2. خیابانی، ناصر و پورجابری، شقایق (1396). رونق و رکود قیمت‌های مسکن در ایران: رویکرد جابه‏جایی مارکف- خودرگرسیون‌برداری. فصلنامه برنامه‌ریزی و بودجه، سال بیست و دوم، 1، 32-3.
3. عسگری، علی (1390). مروری بر مدل‏سازی عامل محور و کاربردهای آن در شهرسازی، تورنتو، دانشگاه یورک.
4. قادری، جعفر و ایزدی، بهنام (1395). بررسی تأثیر عوامل اقتصادی و اجتماعی بر قیمت مسکن در ایران. فصلنامه اقتصاد شهری، سال اول، 1، 75-55.
5. معاونت پژوهشی شهرداری مرکزی اصفهان (1396). بررسی اثرات قانون هدفمند کردن یارانه‌ها بر هزینه و درآمد خانوار شهری. اصفهان: شهرداری اصفهان.
6. نصراصفهانی، رضا صفاری، بابک و لطیفی، محمد رضا (1395). تحلیل عوامل مؤثر اقتصادی بر حباب قیمت مسکن (مطالعه‌ی موردی شهر تهران). فصلنامه تحقیقات اقتصادی، 52، 1، 186- 163.
7. Andrews, D., Sánchez, A., & Johansson, A. (2011). Housing markets and structural policies in OECD countries. OECD Economics Department Working Papers 836, Paris, France.
8. Arce, ÓJ., & Salido, D. (2011). Housing bubbles, American Economic Journal: Macroeconomics, 3(1), 212–241.
9. Axtell, R., Farmer, D., Geanakoplos, J., Howitt, P., Carrella, E., Conlee, B., Goldstein, J., Hendrey, M., Kalikman, P., Masad, D., Palmer, N., & Yang, C. (2014). An Agent-Based Model of the Housing Market Bubble in Metropolitan Washington, D.C., Deutsche Bundesbank's Spring Conference on Housing markets and the macroeconomy.
10. Barceló, C. (2006). Housing tenure and labour mobility: a comparison across European countries. Banco de Espana Documentos de Trabajo 0603. Madrid: Spain.
11. Blanchflower, DG., & Oswald, AJ. (2013). Does high home ownership impair the labor market?, National Bureau of Economic Research Working Paper 19079, Cambridge MA, United States.
12. Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences, 99(3), 7280-7287.
13. Brueckner, J. (2011). Lectures on Urban Economics, USA, MIT Press.
14. Carstensen, Christian. (2015). An agent-based model of the housing market, Master Thesis, The University of Copenhagen.
15. Casti, J. (1997). Would-be worlds: how simulation is changing the world of science. USA: Wiley.
16. Cokayne, G. (2019). Macroprudential policy; Housing finance; Firms and households. Working Paper, No. 138.
17. Crowe, C., Dell’Ariccia, G., Igan, D., & Rabanal, P. (2013). How to deal with real estate booms: Lessons from country experiences, J Finance Stab, 9(3), 300–319.
18. Cuerpo, C., Kalantaryan, S., & Pontuch, P. (2014). Rental market regulation in the European Union. European Economy, Directorate General Economic and Financial Affairs Economic Papers 515, European Commission, Brussels, Belgium.
19. Czerniak, A., & Rubaszek, M. (2017). The Size of the Rental Market and Housing Market Fluctuations, Open Economies Review, 29(2), 261-281.
20. Epstein, J., & Axtell, R. (1996). Growing Artificial Societies. USA: MIT Press.
21. Fan, Y., Yang, Z., & Yavas, A. (2019). Understanding real estate price dynamics: The case of housing prices in five major cities of China, Journal of Housing Economics, 43, 37-55.
22. Garcia, E., & Grossman, V. (2020). Explosive dynamics in house prices? An exploration of financial market spillovers in housing markets around the world, Journal of International Money and Finance, 101, 102103.
23. Ge, J. (2017). Endogenous rise and collapse of housing price: An agent-based model of the housing market, Computers, Environment and Urban Systems, 62, 182-198.
24. Ge, J. (2014). Who Creates Housing Bubbles? An Agent-Based Study. In: Alam S., Parunak H. (eds) Multi-Agent-Based Simulation XIV. MABS 2013.
25. He, Y., & Xia, F. (2019). Heterogeneous traders, house prices and healthy urban housing market: A DSGE model based on behavioral economics, Habitat International, https://doi.org/10.1016/j.habitatint.2019.102085
26. He, Z., Dong, J., & Yu, L. (2018). An agent-based model for investigating the impact of distorted supply–demand information on China's resale housing market, Journal of Computational Science, 25, 1-15.
27. IMF. (2009). Spain: selected issues. International Monetary Fund. Washington DC: United States.
28. Jennings, N.R. (2000). On agent-based software engineering. Artificial intelligence, 117(2), 277-296.
29. Karpestam, P., & Johansson, S. (2019). Interest-only-mortgages and housing market fluctuations in Denmark, Journal of Housing Economics, 46, 101627.
30. Killins, R., Egly, P., & Escobari, D. (2017). The impact of oil shocks on the housing market: Evidence from Canada and U.S, Journal of Economics and Business, 93, 15-28.
31. Kofner, S. (2014). The German housing system: Fundamentally resilient?, Housing Built Environment, 29(2), 255–275
32. Leamer, E. (2007). Housing is the business cycle. National Bureau of Economic Research Working Paper 13428, Cambridge MA, United States.
33. Liu, C., Zheng, Y., Zhao, Q., & Wang, C. (2020). Financial stability and real estate price fluctuation in China, Physica A: Statistical Mechanics and its Applications, 540, 122980.
34. Liu, F., Ren, H., & Liu, C. (2019). Housing price fluctuations and financial risk transmission: a spatial economic model, Journal of Applied Economics, 51(53), 5767-5780.
35. Lyons, R. (2018). Credit conditions and the housing price ratio: Evidence from Ireland’s boom and bust, Journal of Housing Economics, 42, 84-96.
36. Marini, M., Chokani, N., & Abhari, R. (2019). Immigration and future housing needs in Switzerland: Agent-based modelling of agglomeration Lausanne, Computers, Environment and Urban Systems, 78.
37. Nneji, O., Brooks, C., & Ward, W. (2013). House price dynamics and their reaction to macroeconomic changes, Economic Modelling, 32, 172-178.
38. North, M.J., & Macal, C.M. (2005). Escaping the accidents of history: an overview of artificial life modeling with Repast, Artificial life models in software. London: Springer.
39. Su, C., Yin, X., Tao, R., Lobonţ, O., & Moldovan, N. (2018). Are there significant linkages between two series of housing prices, money supply and short-term international capital? Evidence from China, Digital Signal Processing, 83, 148-156.
40. Sun, X., & Tsang, K. (2019). Large price movements in housing markets, Journal of Economic Behavior & Organization, 163, 1-23.
41. Tupenaite, L., Kanapeckiene, L., & Naimaviciene, J. (2017). Determinants of Housing Market Fluctuations: Case Study of Lithuania, Procedia Engineering, 172, 1169-1175.
42. Ustvedt, Sarah. (2016). An Agent-Based Model of a Metropolitan Housing Market, Master Thesis, Norwegian University of Science and Technology.