سنجش محتوای اطلاعات در معاملات سهام؛ شواهدی از بازار سرمایه ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه اقتصاد، دانشکده اقتصاد، دانشگاه علامه طباطبائی، تهران، ایران

2 اقتصاد نظری، دانشکده اقتصاد، دانشگاه علامه طباطبائی، تهران، ایران

چکیده

در بازارهای کارا، تمامی عوامل عقلایی‌ هستند و اطلاعات جدید در دسترس همگان قرار می‌گیرد، لذا قیمت‌ها بلافاصله تعدیل می‌شوند. با این حال، در دنیای واقعی، فعالان بازار هم در دستیابی به اطلاعات و هم در تفسیر آن‌ها بسیار ناهمگن می‌باشند، لذا عدم تقارن اطلاعات وجود دارد. تعیین سطح دقیق عدم تقارن اطلاعاتی هم برای معامله‌گران برای برخورد مناسب‌تر با مسائلی نظیر انتخاب دارایی، زمان‌بندی، بازتعریف سطح ریسک و نرخ‌ بازده مورد نیاز و هم برای تنظیم‌گران برای دستیابی به طراحی بازاری با عملکرد خوب، ضروری است. در این مقاله با استفاده از داده‌های 1260 سهام/فصل (140 شرکت در قالب 10 صنعت که سهم 64 درصدی از ارزش بازار سهام ایران را در اختیار دارند، برای بازه زمانی 1400:1 تا 1402:1)، مقدار عدم تقارن اطلاعات با استفاده از دو مدل PIN و MPIN برآورد می‌شود. نتایج حاکی از آن است که اولاً احتمال وجود اطلاعات خصوصی در بازار سهام ایران به‌مراتب بالاتر از سایر کشورها می‌باشد. ثانیاً بیشترین مقدار عدم تقارن اطلاعات به صنعت «زراعت» کمترین آن به دو صنعت بزرگ «فرآورده‌های نفتی» و «شیمیایی» تعلق دارد. ثالثاً بیشترین عدم تقارن اطلاعات به نماد «زملارد» از گروه زراعت و کمترین آن به نماد «آریا» از صنعت شیمیایی، اختصاص دارد. یافته‌ها بیانگر آن است که صنایع یا شرکت‌هایی با سهم بازاری اندک، که محصولات غیرهمگن و متنوع‌تری تولید می‌کنند، عدم تقارن اطلاعات بالاتری را پیش رو دارند. در مقابل، صنایع پتروپالایشی و بیشتر شرکت‌های زیرمجموعه آن‌ها که شرکت‌های بزرگ مقیاس بوده و محصولاتی نسبتاً همگن‌تر تولید می‌کنند، از عدم تقارن اطلاعات کمتری برخوردارند.
طبقه بندی JELC13، C38، G14، G17

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Measuring the Information Content of Stock Trade; Evidence from Iranian Capital Market

نویسندگان [English]

  • Reza Taleblou 1
  • Parisa Mohajeri 2
1 Department of Economics, Faculty of Economics, Allameh Tabataba'i University, Tehran, Iran
2 Department of Economics, Faculty of Economics, Allameh Tabataba’i University, Tehran, Iran
چکیده [English]

In efficient markets, all agents are rational, and new information becomes immediately available to everyone, resulting in instantaneous price adjustments. However, in the real world, market participants differ significantly in both their access to information and their interpretation of it, leading to information asymmetry. Accurately determining the level of information asymmetry is crucial for traders to make appropriate decisions regarding asset selection, timing, risk level redefinition, and required rate of return. It is also essential for regulators to achieve designing a well-functioning market. In this paper, we estimate the level of information asymmetry using 1,260 stocks/quarters data (140 companies across 10 industries, constituting 64% of Iran's stock market value, during 1400-Q1 to 1402-Q1) by employing two prominent models, PIN and MPIN. The results indicate that, first, the probability of private information in the Iranian stock market is much higher than in other countires. Second, the highest level of information asymmetry is observed in the "Agriculture" industry, conversely, the "Petroleum Products" and "Chemical" industries exhibit the lowest MPIN values. Third, at the firm-specific level, "ZMLRD" from the Agriculture industry exhibits the highest information asymmetry, while "ARYA" from the Chemical industry shows the lowest level of information asymmetry. The findings imply that industries/companies with low market shares that produce more heterogeneous and diverse products experience higher information asymmetry. In contrast, Petro-Chimical industries/companies, with high market shares that produce relatively more homogeneous products, have less information asymmetry.
JEL Classification: C13, C38, G14, G17

کلیدواژه‌ها [English]

  • High Frequency Data Information Asymmetry
  • Market Microstructure
  • Multilayer Probability of Informed Trading
  • Private Information
  1. دولو، مریم و عزیزی، نازنین (1396). واکاوی منشأ قیمت‌گذاری ریسک اطلاعات؛ شواهدی از معیار احتمال معاملات آگاهانه تعدیل شده. تحقیقات مالی، 19(3)، 438-415.
  2. طالبلو، رضا و رحمانیانی، مولود (1396). اندازه‌گیری سطح عدم تقارن اطلاعات برای شرکت‌های منتخب فعال در بورس اوراق بهادار تهران: احتمال مبادله آگاهانه (PIN). تحقیقات مدل‌سازی اقتصادی، 29، 98-73.
  3. طالبلو، رضا؛ شاکری، عباس و رحمانیانی، میلاد (1398). مقایسه روش‌های مختلف تخمین احتمال مبادله آگاهانه در بورس اوراق بهادار تهران. پژوهش‌های اقتصادی ایران، 24 (78)، 29-1.
  4. طالبلو، رضا و مهاجری، پریسا (1399). الگوسازی سرایت تلاطم در بازار سهام ایران؛ رویکرد فضا-حالت غیرخطی. تحقیقات اقتصادی، 55(4)، 990-963.

DOI: 10.22059/JTE.2021.322088.1008455

  1. طالبلو، رضا و مهاجری، پریسا (1401). اتصالات و سرریز ریسک در بازار سهام ایران، یک تحلیل بخشی با به‌کارگیری مدل خودرگرسیون برداری با پارامترهای متغیر طی زمان (TVP-VAR). مدل‌سازی اقتصادسنجی، 7(3)، 125-95.
  2. مهاجری، پریسا و طالبلو، رضا (1401). بررسی پویایی‌های سرریز تلاطمات بین بازده بخش‌ها با رویکرد اتصالات خودرگرسیون برداری با پارامترهای متغیر در طول زمان (TVP-VAR)؛ شواهدی از بازار سهام ایران. تحقیقات اقتصادی، 57(2)، 356-321.

DOI: 10.22059/JTE.2023.349895.1008727

  1. Ahn, H. J, Kang, J. & Ryu, D. (2008). Informed Trading in the Index Option Market: The Case of Kospi 200 Options. Journal of Futures Markets, 28(12), 1118–1146.
  2. aleblou, R. & Mohajeri, P. (2022). Connectedness and Risk Spillovers in Iranian Stock Market: Using TVP-VAR in a Sectoral Analysis. Journal of Econometric Modeling, 7(3), 95-125 (in persian).
  3. Atilgan, Y. (2014). Volatility Spreads and Earnings Announcement Returns. Journal of Banking and Finance, 38, 205-215.
  4. Berkman, H., Koch, P.D., Westerholm, P.J. (2014). Informed Trading through the Accounts of Children. Journal of Finance, 69(1), 363–404.
  5. Boehmer, E., Jones, C. M., Zhang, X., & Zhang, X. (2021). Tracking retail investor activity. The Journal of Finance, 76(5), 2249-2305.
  6. Bongaerts, D., Rösch, D. & Van Dijk, M.A. (2014). Cross-Sectional Identification of Informed Trading. SSRN Electronic Journal.
  7. Brennan, M. J., Huh, S. W., & Subrahmanyam, A. (2016). Asymmetric Effects of Informed Trading on the Cost of Equity Capital. Management Science, 62(9), 2460-2480.
  8. Brennan, M. J., Huh, S. W., & Subrahmanyam, A. (2018). High-Frequency Measures of Informed Trading and Corporate Announcements. The Review of Financial Studies, 31(6), 2326-2376.
  9. Cepoi, C.O., Dragota, V., Trifan, R., & Lordache, A. (2023). Probability of Informed Trading during the COVID-19 Pandemic: the Case of the Romanian Stock Market. Financial Innovation, 9(34), 1-27.
  10. Chang, S.S., Chang, V.L. & Wang, F.A. (2014), A Dynamic Intraday Measure of the Probability of Informed Trading and Firm-Specific Return Variation. Journal of Empirical Finance, 29, 80–94.
  11. Chen, Y., & Zhao, H. (2012). Informed Trading, Information Uncertainty, and Price Momentum. Journal of Banking and Finance, 36(7), 2095-2109.
  12. Davallou, M. & Azizi, N. (2017). The Investigation of Information Risk Pricing; Evidence from Adjusted Probability of Informed Trading Measure. Financial Research Journal, 19(3), 415-438 (in persian).
  13. Duarte, J., & Young, L. (2009). Why Is Pin Priced? Journal of Financial Economics, 91(2), 119–138.
  14. Duarte, J., Hu, E., & Young, L. A. (2015). What Does the PIN Model Identify as Private Information?. Available at SSRN 2564369.
  15. Easley D., & O’Hara, M. (1992). Time and the Process of Security Price Adjustment. Journal of Finance, 47(2), 577–605
  16. Easley D., Kiefer N.M., O’Hara M., & Paperman JB (1996) Liquidity, Information, and Infrequently Traded stocks. The Journal of Finance, 51(4), 1405.
  17. Easley, D., & O’Hara, M. (1987). Price, Trade Size, and Information in Securities Markets. Journal of Financial Economics, 19(1), 69–90.
  18. Easley, D., De Prado, M.M., & O’Hara, M. (2011). The Microstructure of the "Flash Crash": Flow Toxicity, Liquidity Crashes, and the Probability of Informed Trading. Journal of Portfolio Management, 37(2), 118–128.
  19. Easley, D., Engle, R.F., O’hara, M., & Wu, L. (2008). Time-Varying Arrival Rates of Informed and Uninformed Trades. Journal of Financial Econometrics, 6(2), 171–207.
  20. Easley, D., Hvidkjaer, S., & O’Hara, M. (2002). Is Information Risk a Determinant of Asset Returns? The Journal of Finance, 57(5), 2185–2221.
  21. Easley, D., Hvidkjaer, S., & O’Hara, M. (2010). Factoring Information into Returns. Journal of Financial and Quanti- tative Analysis, 45(2), 293–309.
  22. Easley, D., Kiefer, N.M. & O’Hara, M. (1997). The Information Content of the Trading Process. Journal of Empirical Finance, 4(2-3), 159–186.
  23. Easley, D., López De Prado, M.M., & O’Hara, M. (2012). Flow Toxicity and Liquidity in a High-Frequency World. Review of Financial Studies, 25(5), 1457–1493.
  24. Ersan, O. (2016). Multilayer Probability of Informed Trading. SSRN Electronic Journal.
  25. Ghachem M. & Ersan O. (2023). PINstimation: An R Package for Estimating Models of Probability of Informed Trading. SSRN Electronic Journal.
  26. Guo, H., & Qiu, B. (2016). A Better Measure of Institutional Informed Trading. Contemporary Accounting Research, 33(2), 815–850.
  27. Hasbrouck, J. (1991). Measuring the Information Content of Stock Trades. The Journal of Finance, 46(1), 179–207.
  28. Henry, T. R., Kisgen, D. J., & Wu, J. J. (2015). Equity Short Selling and Bond Rating Downgrades. Journal of Financial Intermediation, 24, 89-111.
  29. Hsieh, W.l.G. & He, H.R. (2014). Informed Trading, Trading strategies and the Information Content of Trading Volume: Evidence from the Taiwan Index Options Market. Journal of International Financial Markets, Institutions and Money, 31(1), 187–215.
  30. Huang, R.D., & Stoll, H.R. (1996). Dealer Versus Auction Markets: A Paired Comparison of Execution Costs on Nasdaq and the NYSE. Journal of Financial Economics, 41(3), 313–357.
  31. Huang, R.D., & Stoll, H.R. (1997). The Components of the Bid-Ask Spread: A General Approach. Review of Financial Studies, 10(4):995–1034.
  32. Jayaraman, S., & Shuang Wu, J. (2020). Should I Stay or Should I Grow? Using Voluntary Disclosure to Elicit Market Feedback. The Review of Financial Studies, 33(8), 38543888.
  33. Kang, M. (2010). Probability of Information-Based Trading and the January Effect. Journal of Banking and Finance, 34(12), 2985-2994.
  34. Kondor, P., & Pinter, G. (2022). Clients' Connections: Measuring the Role of Private Information in Decentralized Markets. The Journal of Finance, 77(1), 505-544.
  35. Lee, C. M., & Ready, M. J. (1991). Inferring Trade Direction from Intraday Data. The Journal of Finance, 46(2), 733-746.
  36. Ma, R., Marshall, B. R., Nguyen, H. T., Nguyen, N. H., & Visaltanachoti, N. (2022). Climate Events and Return Comovement. Journal of Financial Markets, 61, 100731.
  37. Madhavan, A., Richardson, M., & Roomans, M. (1997). Why Do Security Prices Change? a Transaction-Level Analysis of NYSE Stocks. Review of Financial Studies, 10(4), 1035–1064.
  38. Mohajeri, P. & Taleblou, R. (2023). Investigating the Dynamic of Volatility Spillovers across Sector’s Return Utilizing a Time-Varying Parameter Vector Autoregressive Connectedness Approach; Evidence from Iranian Stock Market. Economic Research (Tahghighat-E-Eghtesadi), 57(2), 321-359 (in persian).
  39. Rosu, I. (2019). Fast and Slow Informed Trading. Journal of Financial Markets, 43, 1-30.
  40. Taleblou, R. & Mohajeri, P. (2021). Modeling the Transmission of Volatility in the Iranian Stock Market; Space-State Nonlinear Approach. Economic Research (Tahghighat-E-Eghtesadi), 55(4), 963-990 (in persian).
  41. Taleblou, R. & Rahmaniani, M. (2017). Measuring Probability of Informed Trading in Tehran Stock Exchange. Journal of Economic Modeling Reasearch, 8(29), 73-98 (in persian).
  42. Taleblou, R., & Mohajeri, P. (2023). Modeling the Daily Volatility of Oil, Gold, Dollar, Bitcoin and Iranian Stock Markets: An Emprical Application of a Nonlinear Space State Model. Iranian Economic Review, 27(3), 1033-1063.
  43. Taleblou, R., Shakeri, A. & Rahmaniani, M. (2019). Comparing Different Methods of Estimation for Probability of Informed Trading in Tehran Stock Exchange. Iranian Journal of Economic Reasearch, 24(78), 1-29 (in persian).
  44. Taleblou, R., Shakeri, A. & Rahmaniani, M. (2019). Comparing Different Methods of Estimation for Probability of Informed Trading in Tehran Stock Exchange. Iranian Journal of Economic Reasearch, 24(78), 1-29 (in persian).
  45. Vega, C. (2006). Stock Price Reaction to Public and Private Information. Journal of Financial Economics, 82(1), 103-133.
  46. Wen-liang, G. H., & He, H. R. (2014). Informed Trading, Trading Strategies and the Information Content of Trading Volume: Evidence from the Taiwan Index Options Market. Journal of International Financial Markets, Institutions and Money, 31, 187-215.
  47. Yan, Y., & Zhang, S. (2012). An Improved Estimation Method and Empirical Properties of the Probability of Informed Trading. Journal of Banking and Finance, 36 (2), 454–467
  48. Yin, X., & Zhao, J. (2015). Ahidden Markov Model Approach to Information-Based Trading: Theory and Applications. Journal of Applied Econometrics, 30(7), 1210–1234.