مدل سازی اقتصادی ادغام منطقه ای بازارهای برق کشورهای منتخب عضو سازمان همکاریهای اقتصادی (اکو): رهیافت پویایی شناسی سیستم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری اقتصاد، دانشکده علوم اداری و اقتصاد، دانشگاه اصفهان، اصفهان، ایران

2 استاد گروه اقتصاد، دانشکده علوم اداری و اقتصاد، دانشگاه اصفهان، اصفهان، ایران

3 دانشیار گروه اقتصاد، دانشکده علوم اداری و اقتصاد، دانشگاه اصفهان، اصفهان، ایران

4 دانشیار گروه مهندسی برق، دانشکده فنی و مهندسی، دانشگاه اصفهان، اصفهان، ایران

10.22059/jte.2022.347749.1008711

چکیده

باتوجه به رشد روزافزون تقاضای برق و مسائل مربوط به عرضه آن از قبیل افزایش هزینه‌‌های اجتماعی سوخت­های فسیلی و همچنین عدم توانایی دولت‌ها در تأمین منابع مالی لازم برای ایجاد و افزایش واحدهای تولیدی، مباحث مربوط به اقتصاد سیستم­های قدرت بیش از پیش مورد توجه دولت­ها و کارشناسان اقتصاد انرژی قرار گرفته ­است، تا تخصیص منابع کاراتری را اعمال نمایند. بنابراین در مقاله حاضر هدف این است که ادغام منطقه‌ای بازارهای برق در بین کشورهای منتخب عضو اکو (ایران، ترکیه، آذربایجان، پاکستان و افغانستان) با رویکرد پویایی‌شناسی سیستم و با استفاده از داده‌های سال‌های  2019-1980 به‌منظور بیشینه‌سازی پایایی عرضه برق، مدل‌سازی شود. برای این منظور دو سناریو شامل سناریوی بازار ملی برق (سناریو خودکفایی) و سناریوی بازار ادغام منطقه‌ای (سناریو آزاد) از طریق تصریح و برآورد یک الگوی سری‌های زمانی ساختاری تا سال 2030 شبیه‌سازی شده است. نتایج حاصل از شبیه‌سازی دو سناریو حاکی از آن است که کشور ایران با ذخیره ‌نهایی بیشتر از یک و کم‌ترین‌ قیمت در بین کشورهای منطقه بیشترین صادرات برق را دارد، و در مقابل افغانستان با ذخیره ‌نهایی کمتر از یک در بین کشورهای منطقه، بیشترین واردات برق را به خود اختصاص می‌دهد. از دیگر نتایج حاصل از این شبیه‌سازی می‌توان به کاهش قیمت برق به دلیل کاهش هزینه‌های تولید اشاره کرد. از مهم‌ترین یافته‌های این مقاله نیز می‌توان به ایجاد بازار منطقه­ای برق میان کشورهای عضو اکو اشاره نمود که در آن نااطمینانی در تأمین و پایایی عرضه برق مورد نیاز در بین کشورهای عضو اکو کاهش یابد.
 طبقه‌بندی JEL: L94،F15 ، Q41، C33، C61

کلیدواژه‌ها


عنوان مقاله [English]

Economic Modeling of Regional Integration in Electricity Markets of Member Countries in Selected Economic Cooperation Organization (ECO): Application of System Dynamics Approach

نویسندگان [English]

  • Meysam Haddad 1
  • Seyed Komail Tayebi 2
  • Alimorad Sharifi 3
  • Mehdi Niroomand 4
1 PhD Candidate, Department of Economics, Faculty of Administrative Sciences and Economics, University of Isfahan, Isfahan, Iran
2 Professor, Department of Economics, Faculty of Administrative Sciences and Economics, University of Isfahan, Isfahan, Iran
3 Associate Professor, Department of Economics, Faculty of Administrative Sciences and Economics, University of Isfahan, Isfahan, Iran
4 Associate Professor, Department of Electrical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
چکیده [English]

Due to the increasing growth rate of electricity demand as well as relevant supply challenges, the economic issues of power systems have been considered by governments and energy experts to achieve further efficient resources allocation. Based on an approach of a dynamic system, the aim of this study has been to modelling the regional integration of electricity markets among the selected ECO member countries (including Iran, Turkey, Azerbaijan, Pakistan and Afghanistan) in order to maximize the stability of electricity supply. Accordingly, the required data have been applied during the period of 1980-2019. In this respect, two scenarios, namely a scenario of self-sufficiency of electricity (implying national electricity market) and a scenario of free regional market (implying regional integration market) have been conducted respectively, by specifying and estimating a Structural time series model, to simulate the trade flows of electricity in the selected ECO country members by 2030. The simulated results have indicated that Iran has had the marginal storage of more than one and the lowest price among the countries, while it has the largest volumes of electricity exports. Afghanistan with the marginal storage of less than one among the regional countries has had the lowest volumes of electricity Imports. In addition, the empirical results have revealed the fact that the electricity price has been decreasing as a result of a decrease in the electricity production costs. Consequently, the paper findings imply that uncertainty in the electricity supply can be reduced through implementing an integrated regional electricity market among the ECO members.
JEL classification: L94 ،F15، Q41، C33، C6

کلیدواژه‌ها [English]

  • Electricity Market
  • Regional Integration
  • ECO Country Members Countries
  • Dynamic System
  • Structural Time Series Model
  1. احمدی، معین، ودادی کانتر، سعید و کی قبادی، مهدی (1398). ارائه مدل مطلوب شکل‌گیری بازار برق منطقه‌ای کشورهای عضو اکو با الگوبرداری از مدل بازار برق یکپارچه اتحادیه اروپا. اندیشکده حکمرانی انرژی و منابع ایران، تهران، 2(12)، 13-34
  2. صادقی، زین العابدین، بهادرمایوان، سحر و نجاتی، مهدی (1396). شبیه­ سازی یکپارچگی بازار برق (سیستم­های قدرت (در کشورهای هم­مرز ایران. پژوهشنامه اقتصاد انرژی ایران، 6(24)، 149-123.
  3. لطفعلی­پور، محمدرضا، نوروزی، روح الله، آشنا، ملیحه و ذبیحی، مریم (1388). بررسی تأثیر الحاق به سازمان جهانی تجارت بر صادرات برق ایران. مدل‌سازی اقتصادی، 3(3)، 202-
  4. محقر، علی و نجف­زاده، کیان (1396). مدل مبتنی بر پویایی سیستم برای توسعه­ ظرفیت تولیدی برق در کشور. فرآیند مدیریت توسعه، 30(2)، 172-145.
  5. Apergis, N., Fontini, F., & Inchauspe, J. (2017). Integration of regional electricity markets in Australia: A price convergence assessment. Energy Economics, 62, 411-418.
  6. Arango, S., Smith, R.A., Dyner, I., & Osorio, S. (2002). A System Dynamics Model to Analyze Investments in Power Generation in Colombia.
  7. Balaguer, J. (2011). Cross-Border Integration in the European Electricity Market: Evidence from the Pricing Behavior of Norwegian and Swiss Exporters. Energy Policy, 39 (9), 4703-4712.
  8. Batalla, J., Paniagua, J., & Trujillo, E. (2019). Energy Market Integration and Electricity Trade: A gravity model. Working Papers in Applied Economics.
  9. Bhattacharyya, Subhes C. (2019). Energy Economics, Concepts, Issues, Markets and Governance, Springer, Second Edition.
  10. Chen, H., Cui, J., Song. F., & Jiang, Z. (2022). Evaluating the impacts of reforming and integrating China’s electricity sector. Energy Economics, 108, 1-14.
  11. Dias, F., & Jorge, S. (2017). Market Power and Integrated Regional Markets of Electricity: A Simulation of The MIBEL. International Journal of Economic Sciences, 5(2), 45-67.
  12. Dyner, I., Olivar, G., & Redondo, JM. (2011). A non smooth model of national energy market for the regional energy integration, Conference Proceedings International Conference of the System Dynamics Society in Washington, (29), 1-18.
  13. Forester, J. (1961). Industrial Dynamics. Boston, Massachusetts: MIT Press.
  14. Gnansounou, E., & Dong, J. (2004). Opportunity for Inter-Regional Integration of Electricity Markets: The Case of Shandong and Shanghai in East China. Energy Policy, 32 (15), 1737-1751.
  15. Gugler, K., & Haxhimusa, A. (2019). Market integration and technology mix: Evidence from the German and French electricity markets. Energy Policy, 126, 30-46.
  16. Gujarati, D. N., & Porter, D. C. (2009). Basic Econometrics, Douglas Reiner, Fifth Edition.
  17. Jaehnert, S., & Doorman, G. L. (2012). Assessing the Benefits of Regulating Power Market Integration in Northern Europe, International Journal of Electrical Power & Energy Systems, 43(1), 70-79.
  18. Martínez-Anido, C. B., Vandenbergh, M., De Vries, L., Alecu, C., Purvins, A., Fulli, G., & Huld, T. (2013). Medium-Term Demand for European Cross-Border Electricity Transmission Capacity. Energy Policy, 61, 207-222.
  19. Momodu, A. S., Oyebisi, T. O., & Obilade, T. O. (2012). Modelling the Nigeria's Electric Power System to Evaluate its Long-Term Performance. In Proceedings International Conference of the System Dynamics Society, (30), 1-31.
  20. Nepal, R., & Jamasb, T. (2012). Interconnections and Market Integration in the Irish Single Electricity Market. Energy Policy, 51, 425-434.
  21. Oseni, M., & Pollitt, M. (2016). The promotion of regional integration of electricity markets: Lessons for developing countries. Energy Policy, 88, 628–
  22. Oseni, M., & Pollitt, M. (2013). The Economic Costs of Unsupplied Electricity: Evidence from Backup Generation among African Firms. EPRG Working Paper, 1351.
  23. Pellini, E. (2012). Measuring the impact of market coupling on the Italian electricity market. Energy Policy, 48, 322-333.
  24. Ramos, A. (1999). Modeling competition in electric energy markets by equilibrium constraints. Util Policy, 7(4), 233–242.
  25. Redondo, J., Olivar, G., Ibarra-Vega, D., & Dyner, I. (2018). Modeling for the regional integration of electricity markets. Energy for Sustainable Development, 43, 100-113.
  26. Redondo, JM. (2013). Modelado de Mercados de Electricidad. Doctoral thesis. Colombia: Univers idad Nacional de Colombia Facultad de Ingeniería Manizales.
  27. Salazar, G., & Argüello, G. (2006). Rentas de congestion en las transacciones internacionales de electricidad; analisis para las transacciones ecuador-colombia.
  28. http://biblioteca.cenace.org.ec/jspui/bitstream/123456789/200/1/rte07-01.pdf.
  29. Saroha, S., & Verma, R. (2013). Cross-Border Power Trading Model for South Asian Regional Power Pool. International Journal of Electrical Power & Energy Systems, 44 (1), 146 152.
  30. Sheng, Y., Shi, X., & Zhang, D. (2013). Economic Development, Energy Market Integration and Energy Demand: Implications for East Asia. Energy Strategy Reviews, 2 (2), 146-152.
  31. Sterman, J. D. (2000). Business Dynamics: Systems Thinking and a Modeling for a Complex World, McGraw Hill.
  32. Zhai, Y. (2010). Energy sector integration for low carbon development in greater Mekong sub-region: towards a model of south-south cooperation. World Energy Congress 9.
  33. https://databank.worldbank.org/source/world-development-indicators
  34. https://www.iea.org/
  35. https://isn.moe.gov.ir/